Comparing the Pairing Efficiency over Composite-Order and Prime-Order Elliptic Curves

نویسنده

  • Aurore Guillevic
چکیده

We provide software implementation timings for pairings over composite-order and prime-order elliptic curves. Composite orders must be large enough to be infeasible to factor. They are modulus of 2 up to 5 large prime numbers in the literature. There exists size recommendations for two-prime RSA modulus and we extend the results of Lenstra concerning the RSA modulus sizes to multi-prime modulus, for various security levels. We then implement a Tate pairing over a composite order supersingular curve and an optimal ate pairing over a prime-order Barreto-Naehrig curve, both at the 128-bit security level. We use our implementation timings to deduce the total cost of the homomorphic encryption scheme of Boneh, Goh and Nissim and its translation by Freeman in the prime-order setting. We also compare the efficiency of the unbounded Hierarchical Identity Based Encryption protocol of Lewko and Waters and its translation by Lewko in the prime order setting. Our results strengthen the previously observed inefficiency of composite-order bilinear groups and advocate the use of prime-order group whenever possible in protocol design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic of pairings on algebraic curves for cryptography. (Étude de l'arithmétique des couplages sur les courbes algébriques pour la cryptographie)

Since 2000 pairings became a very useful tool to design new protocols in cryptography. Short signaturesand identity-based encryption became also practical thanks to these pairings.This thesis contains two parts. One part is about optimized pairing implementation on different ellip-tic curves according to the targeted protocol. Pairings are implemented on supersingular elliptic curve...

متن کامل

Pairing for Elliptic Curves with Embedding Degree 1 Defined over Prime Order Fields

In the last years, prime order pairing-based cryptography has received much attention. The embedding degree 1 is very appealing because the computations can be performed without any extension fields, but the efficiency parameter and this particular value of the embedding degree imposes some limits about the possible curves. This paper presents an analysis of the existing algorithms for construc...

متن کامل

On Efficient Pairings on Elliptic Curves over Extension Fields

In implementation of elliptic curve cryptography, three kinds of finite fields have been widely studied, i.e. prime field, binary field and optimal extension field. In pairing-based cryptography, however, pairingfriendly curves are usually chosen among ordinary curves over prime fields and supersingular curves over extension fields with small characteristics. In this paper, we study pairings on...

متن کامل

Heuristics on pairing-friendly elliptic curves

We present a heuristic asymptotic formula as x → ∞ for the number of isogeny classes of pairing-friendly elliptic curves over prime fields with fixed embedding degree k ≥ 3, with fixed discriminant, with rho-value bounded by a fixed ρ0 such that 1 < ρ0 < 2, and with prime subgroup order at most x.

متن کامل

Pairing-Friendly Elliptic Curves of Prime Order

Previously known techniques to construct pairing-friendly curves of prime or near-prime order are restricted to embedding degree k 6 6. More general methods produce curves over Fp where the bit length of p is often twice as large as that of the order r of the subgroup with embedding degree k; the best published results achieve ρ ≡ log(p)/ log(r) ∼ 5/4. In this paper we make the first step towar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013